Myelin and collapsin-1 induce motor neuron growth cone collapse through different pathways: inhibition of collapse by opposing mutants of rac1.
نویسندگان
چکیده
Precise growth cone guidance is the consequence of a continuous reorganization of actin filament structures within filopodia and lamellipodia in response to inhibitory and promoting cues. The small GTPases rac1, cdc42, and rhoA are critical for regulating distinct actin structures in non-neuronal cells and presumably in growth cones. Collapse, a retraction of filopodia and lamellipodia, is a typical growth cone behavior on contact with inhibitory cues and is associated with depolymerization and redistribution of actin filaments. We examined whether small GTPases mediate the inhibitory properties of CNS myelin or collapsin-1, a soluble semaphorin, in chick embryonic motor neuron cultures. As demonstrated for collapsin-1, CNS myelin-evoked growth cone collapse was accompanied by a reduction of rhodamine-phalloidin staining most prominent in the growth cone periphery, suggesting actin filament disassembly. Specific mutants of small GTPases were capable of desensitizing growth cones to CNS myelin or collapsin-1. Adenoviral-mediated expression of constitutively active rac1 or rhoA abolished CNS myelin-induced collapse and allowed remarkable neurite extension on a CNS myelin substrate. In contrast, expression of dominant negative rac1 or cdc42 negated collapsin-1-induced growth cone collapse and promoted neurite outgrowth on a collapsin-1 substrate. These findings suggest that small GTPases can modulate the signaling pathways of inhibitory stimuli and, consequently, allow the manipulation of growth cone behavior. However, the fact that opposite mutants of rac1 were effective against different inhibitory stimuli speaks against a universal signaling pathway underlying growth cone collapse.
منابع مشابه
Rac1 mediates collapsin-1-induced growth cone collapse.
Collapsin-1 or semaphorin III(D) inhibits axonal outgrowth by collapsing the lamellipodial and filopodial structures of the neuronal growth cones. Because growth cone collapse is associated with actin depolymerization, we considered whether small GTP-binding proteins of the rho subfamily might participate in collapsin-1 signal transduction. Recombinant rho, rac1, and cdc42 proteins were tritura...
متن کاملLocalized collapsing cues can steer growth cones without inducing their full collapse
Collapsing factors are proteins that induce growth cone collapse and paralysis when added in a soluble form to cultured embryonic neurons. Here we examine the responses of growth cones to localized collapsing signals. Temporal retinal ganglion cell growth cones exposed to a localized collapsing stimulus from nasal retinal ganglion cell axons frequently turn smoothly away from the axons without ...
متن کاملThe Nogo-66 receptor NgR1 is required only for the acute growth cone-collapsing but not the chronic growth-inhibitory actions of myelin inhibitors.
Neuronal Nogo-66 receptor 1 (NgR1) has been proposed to function as an obligatory coreceptor for the myelin-derived ligands Nogo-A, oligodendrocyte myelin glycoprotein (OMgp), and myelin-associated glycoprotein (MAG) to mediate neurite outgrowth inhibition by these ligands. To examine the contribution of neuronal NgR1 to outgrowth inhibition, we used two different strategies, genetic ablation o...
متن کاملRho family GTPases and neuronal growth cone remodelling: relationship between increased complexity induced by Cdc42Hs, Rac1, and acetylcholine and collapse induced by RhoA and lysophosphatidic acid.
Rho family GTPases have been assigned important roles in the formation of actin-based morphologies in nonneuronal cells. Here we show that microinjection of Cdc42Hs and Rac1 promoted formation of filopodia and lamellipodia in N1E-115 neuroblastoma growth cones and along neurites. These actin-containing structures were also induced by injection of Clostridium botulinum C3 exoenzyme, which abolis...
متن کاملSema3F downregulates p53 expression leading to axonal growth cone collapse in primary hippocampal neurons.
Hippocampal nerve growth is regulated by the coordinated action of numerous external stimuli, including positively acting neurotrophin-derived growth cues and restrictive semaphorin cues, however the underlying cellular mechanisms remain largely unclear. We examined the potential cellular mechanism of Semaphorin3F (Sema3F) in cultured primary hippocampal neurons. We show that Sema3F can down-re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 6 شماره
صفحات -
تاریخ انتشار 1999